Fractional Geometric Calculus: Toward A Unified Mathematical Language for Physics and Engineering ?
نویسنده
چکیده
This paper discuss the longstanding problems of fractional calculus such as too many definitions while lacking physical or geometrical meanings, and try to extend fractional calculus to any dimension. First, some different definitions of fractional derivatives, such as the Riemann-Liouville derivative, the Caputo derivative, Kolwankar’s local derivative and Jumarie’s modified Riemann-Liouville derivative, are discussed and conclude that the very reason for introducing fractional derivative is to study nondifferentiable functions. Then, a concise and essentially local definition of fractional derivative for one dimension function is introduced and its geometrical interpretation is given. Based on this simple definition, the fractional calculus is extended to any dimension and the Fractional Geometric Calculus is proposed. Geometric algebra provided an powerful mathematical framework in which the most advanced concepts modern physic, such as quantum mechanics, relativity, electromagnetism, etc., can be expressed in this framework graciously. At the other hand, recent developments in nonlinear science and complex system suggest that scaling, fractal structures, and nondifferentiable functions occur much more naturally and abundantly in formulations of physical theories. In this paper, the extended framework namely the Fractional Geometric Calculus is proposed naturally, which aims to give a unifying language for mathematics, physics and science of complexity of the 21st century.
منابع مشابه
A numerical approach for variable-order fractional unified chaotic systems with time-delay
This paper proposes a new computational scheme for approximating variable-order fractional integral operators by means of finite element scheme. This strategy is extended to approximate the solution of a class of variable-order fractional nonlinear systems with time-delay. Numerical simulations are analyzed in the perspective of the mean absolute error and experimental convergence order. To ill...
متن کاملA Unified Language for Mathematics and Physics
To cope with the explosion of information in mathematics and physics, we need a unified mathematical language to integrate ideas and results from diverse fields. Clifford Algebra provides the key to a unifled Geometric Calculus for expressing, developing, integrating and applying the large body of geometrical ideas running through mathematics and physics.
متن کاملStability and Robust Performance Analysis of Fractional Order Controller over Conventional Controller Design
In this paper, a new comparative approach has been proposed for reliable controller design. Scientists and engineers are often confronted with the analysis, design, and synthesis of real-life problems. The first step in such studies is the development of a 'mathematical model' which can be considered as a substitute for the real problem. The mathematical model is used here as a plant. Fractiona...
متن کاملSLIDING MODE CONTROL BASED ON FRACTIONAL ORDER CALCULUS FOR DC-DC CONVERTERS
The aim of this paper is to design a Fractional Order Sliding Mode Controllers (FOSMC)for a class of DC-DC converters such as boost and buck converters. Firstly, the control lawis designed with respect to the properties of fractional calculus, the design yields an equiv-alent control term with an addition of discontinuous (attractive) control law. Secondly, themathematical proof of the stabilit...
متن کاملOn certain fractional calculus operators involving generalized Mittag-Leffler function
The object of this paper is to establish certain generalized fractional integration and differentiation involving generalized Mittag-Leffler function defined by Salim and Faraj [25]. The considered generalized fractional calculus operators contain the Appell's function $F_3$ [2, p.224] as kernel and are introduced by Saigo and Maeda [23]. The Marichev-Saigo-Maeda fractional calculus operators a...
متن کامل